So to make this circuit work I needed to produce a gain of at least a few hundred. I started out trying to do this with an uA741. With a gain-bandwidth product of 1MHz, I could at most produce a gain of 100 at 10kHz, which was a bit weak. After that I tried using a . It had a better gain-bandwidth product of 3MHz, but I had a lot of problems with lock up and oscillations.
Finally I solved the gain-bandwidth issue using two op-amps, the LM358 (two amplifiers in one package). Since the signal is low, and we are interested in the AC-signal, I AC-coupled the feedback loop in both amplifier stages. Final circuit looks like this:
EMC sound detector |
EMC sound detector, actual build. |
There was some trial and error and usage of what components was at hand. To determine the maximum gain of the second stage, I used a potentiometer where the 270 ohm resistor is now. I turned the potentiometer to just below the point where the circuit started to oscillate. The circuit is sensitive enough to sound out fields from, for example a cell phone, but the sound volume isn't that high. I think the circuit can achieve higher gain with a smaller cap on the output (22uF now). I would need to put a higher resistor after it though, to keep this stage from filtering out low, but audible frequencies.
No comments:
Post a Comment